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Abstract

Groupoids generalize groups, spaces, group actions, and equivalence relations. This last aspect
dominates in noncommutative geometry, where groupoids provide the basic tool to desingularize
pathological quotient spaces. In physics, however, the main role of groupoids is to provide a
unified description of internal and external symmetries. What is shared by noncommutative
geometry and physics is the importance of Connes’s idea of associating aC∗-algebraC∗(Γ ) to a
Lie groupoidΓ : in noncommutative geometryC∗(Γ ) replaces a given singular quotient space by
an appropriate noncommutative space, whereas in physics it gives the algebra of observables of
a quantum system whose symmetries are encoded byΓ . Moreover, Connes’s mapΓ �→ C∗(Γ )
has a classical analogueΓ �→ A∗(Γ ) in symplectic geometry due to Weinstein, which defines
the Poisson manifold of the corresponding classical system as the dual of the so-called Lie
algebroidA(Γ ) of the Lie groupoidΓ , an object generalizing both Lie algebras and tangent
bundles.

Only a handful of physicists appear to be familiar with Lie groupoids and Lie algebroids, whereas
the latter are practically unknown even to mathematicians working in noncommutative geometry: so
much the worse for its relationship with symplectic geometry! Thus the aim of this review paper
is to explain the relevance of both objects to both audiences. We do so by outlining the road from
canonical quantization to Lie groupoids and Lie algebroids via Mackey’s imprimitivity theorem and
its symplectic counterpart. This will also lead the reader into symplectic groupoids, which define a
‘classical’ category on which quantization may speculatively be defined as a functor into the cate-
goryKK defined by Kasparov’s bivariant K-theory ofC∗-algebras. This functor unifies deformation
quantization and geometric quantization, the conjectural functoriality of quantization counting the
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“quantization commutes with reduction” conjecture of Guillemin and Sternberg among its many
consequences.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Influenced by mathematicians such as Grothendieck, Mackey, Connes, and Weinstein,
the use of groupoids in pure mathematics has become respectable (though by no means
widespread), at least in their respective areas of algebraic geometry, representation theory,
noncommutative geometry, and symplectic geometry.1 Unfortunately, in physics groupoids
remain virtually unknown.2 This is a pity for at least two reasons. Firstly, much of the
spectacular mathematics developed in the areas just mentioned becomes inaccessible to
physicists, despite its undeniable relevance to physics. This obstructs, for example, the de-
velopment of a good theory for quantizing singular spaces (of the kind necessary for quantum
cosmology); cf.[55]. As a case in point, many completely natural constructions in non-
commutative geometry look mysterious to physicists who are not familiar with groupoids.
Secondly, in the smooth setting, Lie groupoids along with their associated infinitesimal

1 There is a Groupoid Home Page athttp://www.unr.edu/homepage/ramazan/groupoid/. See also
http://www.cameron.edu/∼koty/groupoids/for an incomplete but useful list of papers involving groupoids, neces-
sarily restricted to mathematics.

2 Conferences such asGroupoids in Analysis, Geometry, and Physics(Boulder, 1999, see[84]) andGroupoids
and Stacks in Physics and Geometry(Luminy, 2004) tend te be almost exlusively attended by mathematicians.

http://www.unr.edu/homepage/ramazan/groupoid/
http://www.cameron.edu~koty/groupoids/
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objects called Lie algebroids provide an ideal framework for practically all aspects of both
classical and quantum physics that involve symmetry in one way or the other.

Indeed, whereas in the work of Grothendieck and Connes groupoids mainly occur as
generalizations of equivalence relations,3 the role of groupoids as generalized symmetries
has been emphasized by Weinstein[104]: “Mathematicians tend to think of the notion of
symmetry as being virtually synonymous with the theory of groups and their actions.4 (. . . )
In fact, though groups are indeed sufficient to characterize homogeneous structures, there
are plenty of objects which exhibit what we clearly recognize as symmetry, but which admit
few or no nontrivial automorphisms. It turns out that the symmetry, and hence much of the
structure, of such objects can be characterized if we use groupoids and not just groups”.

The aim of this paper is to (briefly) explain what Lie groupoids and Lie algebroids
are, and (more extensively) to outline which role they play in physics (at least from the
perspective of the author). Because of the close relationship between quantum theory and
noncommutative geometry on the one hand, and classical mechanics and symplectic geom-
etry on the other,5 our discussion obviously relates to matters of pure mathematics as well,
and here the physics perspective turns out to be quite useful in clarifying the relationship
between noncommutative and symplectic geometry. This relationship is rarely studied in
noncommutative geometry, which might explain the regrettable absence of the concept of
a Lie algebroid from the field.6

With this goal in mind, one of our main points will be to show that the role of Lie
groupoids on the quantum or noncommutative side is largely paralleled by the role Lie
algebroids play on the classical or symplectic side. The highlight of this philosophy is
undoubtedly the close analogy between Connes’s mapΓ �→ C∗(Γ ) in noncommutative
geometry[12] and Weinstein’s mapΓ �→ A∗(Γ ) in symplectic geometry[16,17], notably
the functoriality of both[48]. Furthermore, the transition from classical to quantum theory
through deformation quantization turns out to be given precisely by the association of the
C∗-algebraC∗(Γ ) to the Poisson manifoldA∗(Γ ) [47,56,83]. Hence quantization is closely
related to ‘integration’, in the sense of the association of a Lie groupoid to a Lie algebroid;
see[57] for an introduction to this problem, and[18] for its solution.

We do not provide an extensive mathematical introduction to Lie groupoids and Lie
algebroids, partly because we have already done so before[46], and partly because various
excellent textbooks on this subject are now available[58,68,10]. Instead, we start entirely

3 Grothendieck (to R. Brown in a letter from 1985): “The idea of making systematic use of groupoids (notably
fundamental groupoids of spaces, based on a given set of base points), however evident as it may look today, is to
be seen as a significant conceptual advance, which has spread into the most manifold areas of mathematics. (. . . )
In my own work in algebraic geometry, I have made extensive use of groupoids—the first one being the theory
of the passage to quotient by a ‘pre-equivalence relation’ (which may be viewed as being no more, no less than
a groupoid in the category one is working in, the category of schemes say), which at once led me to the notion
(nowadays quite popular) of the nerve of a category. The last time has been in my work on the Teichmüller tower,
where working with a ‘Teichm̈uller groupoid’ (rather than a ‘Teichm̈uller group’) is a must, and part of the very
crux of the matter (. . . )”.

4 Cf. Connes: “It is fashionable among mathematicians to despise groupoids and to consider that only groups
have an authentic mathematical status, probably because of the pejorative suffix oid”[12].

5 Throughout this paper we use the term ‘symplectic geometry’ so as to include Poisson geometry.
6 Except for the work of the author, the sole exception known to him is[70].
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on the physics side, with a crash course on canonical quantization and its reformulation
by Mackey in terms of systems of imprimitivity. In its original setting Mackey’s notion of
quantization was not only limited to homogeneous configuration spaces, but in addition
lacked an underlying classical theory.7 Both drawbacks are entirely removed once one
adopts the perspective of Lie groupoids on the quantum side and Lie algebroids on the
classical side, and we propose this as a convenient point of entry for physicists into the
world of these seemingly strange and unfamiliar objects.

Once this perspective has been adopted, the entire theory of canonical quantization
and its (finite-dimensional) generalizations is absorbed into a single theorem, stating that
the association ofC∗(Γ ) toA∗(Γ ) mentioned above is a ‘strict’ deformation quantization
(in the sense of Rieffel[89,90]). Furthermore, in our opinion the deepest understanding
of Mackey’s imprimitivity theorem comes from its derivation from the functoriality of
Connes’s mapΓ �→ C∗(Γ ); similarly, the classical analogue of the imprimitivity theorem
in symplectic geometry[108] can be derived from the functoriality of Weinstein’s map
Γ �→ A∗(Γ ) already mentioned.

We finally combine the toolkit of noncommutative geometry with that of symplectic
geometry in proposing a functorial approach to quantization, which is based on KK-theory
on the quantum side and on symplectic groupoids on the classical side. As we see it,
this approach provides the ultimate generalization of the ‘quantization commutes with
reduction’ philosophy of Dirac[20] (in physics) and Guillemin and Sternberg[31,33] (in
mathematics). Beside the use of the K-theory ofC∗-algebras, this generalization hinges
on the use of Lie groupoids and Lie algebroids, and therefore appears to be an appropriate
endpoint of this paper.

2. From canonical quantization to systems of imprimitivity

Quantum mechanics was born in 1925 with the work of Heisenberg, who discovered the
noncommutative structure of its algebra of observables[36]. The complementary work of
Schr̈odinger from 1926[92], on the other hand, rather started from the classical geometric
structure of configuration space. Within a year, their work was unified by von Neumann,
who introduced the abstract concept of a Hilbert space, in which Schrödinger’s wave func-
tions are vectors, and Heisenberg’s observables are linear operators; see[72]. As every
physicist knows, the basic link between matrix mechanics and wave mechanics lies in the
identification of Heisenberg’s infinite matricespj andqi (i, j = 1,2,3), representing the
momentum and position of a particle moving inR3, with Schr̈odinger’s operators−i�∂/∂xj
andxi (seen as a multiplication operator) on the Hilbert spaceH = L2(R3), respectively.
The key to this identification lies in the canonical commutation relations

[pi, q
j] = −i�δji . (1)

Although a mathematically rigorous theory of these commutation relations (as they
stand) exists[42,91], they are problematic nonetheless. Firstly, the operators involved are
unbounded, and in order to represent physical observables they have to be self-adjoint;

7 More precisely, the underlying classical theory was not correctly identified[62].
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yet on their respective domains of self-adjointness the commutator on the left-hand side
is undefined. Secondly,(1) relies on the possibility of choosing global coordinates onR3,
which precludes at least a naive generalization to arbitrary configuration spaces.8

Finding an appropriate mathematical interpretation of the canonical commutation re-
lations(1) is the subject of quantization theory; see[2,46] for recent reviews. From the
numerous ways to handle the situation, we here select Mackey’s approach[60,61].9 The
essential point is to assign momentum and position a quite different role in quantum mechan-
ics, despite the fact that in classical mechanicsp andq can be interchanged by a canonical
transformation.10

Firstly, the position operatorsqj are collectively replaced by a single projection-valued
measureP on R3,11 which is given byPE = χE as a multiplication operator onL2(R3).
Given thisP, any multiplication operatorf defined by a measurable functionf : R3→ R

can be represented asf = ∫
R3 dPE(x) f (x), which is defined and self-adjoint on a suitable

domain.12 In particular, the position operatorsqi can be reconstructed fromP by choosing
f (x) = xi.

Secondly, the momentum operatorspi are collectively replaced by a single unitary group
representationU(R3) onL2(R3), defined by

U(y)ψ(x) := ψ(x− y).

Eachpi can be reconstructed fromU by means of

piψ := i� lim
ti→0

t−1
i (U(ti)− 1)ψ,

whereU(ti) isU atxi = ti andxj = 0 for j �= i; this operator is defined and self-adjoint on
the set of allψ ∈ H for which the limit exists (Stone’s theorem[79]).

8 Mackey [[61], p. 283]: “Simple and elegant as this model is, it appears at first sight to be quite arbitrary and
ad hoc. It is difficult to understand how anyone could have guessed it and by no means obvious how to modify it
to fit a model for space different fromRr”.

9 Continuing the previous quote, Mackey claims with some justification that his approach “(a) Removes much
of the mystery. (b) Generalizes in a straightforward way to any model for space with a separable locally compact
group of isometries. (c) Relates in an extremely intimate way to [the theory of induced representations].” In any
case, Mackey’s approach to the canonical commutation relations, especially in itsC∗-algebraic reformulation
presented below, is vastly superior to their equallyC∗-algebraic reformulation in terms of the so-called WeylC∗-
algebra (cf. e.g.[8]). Indeed (see[46] Def. IV.3.5.1), the Weyl algebra over a Hilbert spaceH (which in the case
at hand isC3) may be seen as the twisted groupC∗-algebra overH as an abelian group under addition,equipped
with the discrete topology. This rape ofH as a topological space is so ugly that it is surprising that papers on the
Weyl C∗-algebra continue to appear. Historically, Weyl’s exponentiation of the canonical commutation relations
was just one of the first attempts to reformulate a problem involving unbounded operators in terms of bounded
ones, and has now been superseded.
10 This feature is shared by most approaches to quantization, except the one mentioned in the preceding footnote.
11 A projection-valued measurePon a spaceΩwith Borel structure (i.e. equipped with aσ-algebra of measurable

sets defined by the topology) with values in a Hilbert spaceH is a mapE �→ PE from the Borel subsetsE ⊂ Ω

to the projections onH that satisfiesP∅ = 0,PΩ = 1,PEPF = PFPE = PE∩F for all measurableE,F ⊂ Ω, and
P∪∞

i=1Ei
=

∑∞
i=1PEi for all countable collections of mutually disjointEi ⊂ Ω.

12 This domain consists of allψ ∈ H for which
∫
R3 d(ψ,PE(x)ψ) |f (x)|2 <∞.
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Consequently, it entails no loss of generality to work with the pair (P,U) instead of the
(qj, pi). The commutation relations(1) are now replaced by

U(x)PEU(x)−1 = PxE, (2)

whereE is a Borel subset ofR3 andxE = {xω | ω ∈ E}. On the basis of this reformulation,
Mackey proposed the following sweeping generalization of the the canonical commutation
relations.13

Definition 1. Suppose a Lie groupG acts smoothly on a manifoldM.

(1) A system of imprimitivity (H, U, P) for this action consists of a Hilbert spaceH, a
unitary representationU of G onH, and a projection-valued measureE �→ PE onM
with values inH, such that(2) holds for allx ∈ G and all Borel setsE ⊂ M.

(2) A G-covariant representation (H, U, π) of theC∗-algebraC0(M) relative to this action
consists of a Hilbert spaceH, a unitary representationU ofGonH, and a nondegenerate
representationπ of C0(M) onH satisfying

U(x)π(ϕ)U(x)−1 = π(Lxϕ) (3)

for all x ∈ G andϕ ∈ C0(M), whereLxϕ(m) = ϕ(x−1m).

The spectral theorem (cf.[79]) implies that these notions are equivalent: a projection-
valued measureP defines and is defined by a nondegenerate representationπ of C0(M)
on H by means ofπ(ϕ) = ∫

M
dP(m)ϕ(m), and(2) is then equivalent to the covariance

condition (3). Hence we may interchangeably speak of systems of imprimitivity or covariant
representations. As a further reformulation, it is easy to show (cf.[21,23,78]) that there is a
bijective correspondence betweenG-covariant representations ofC0(M) and nondegenerate
representations of the so-called transformation groupC∗-algebraC∗(G,M) ≡ G×αC0(M)
defined by the givenG-action onM, which determines an automorphic actionα of G on
C0(M) by αx = Lx.14

Such a system describes the quantum mechanics of a particle moving on a configuration
spaceM on whichGacts by symmetry transformations; in particular, each elementXof the
Lie algebrag of G defines a generalized momentum operator

X̂ = i�dU(X) (4)

onH, which is defined and self-adjoint on the domain of vectorsψ ∈ H for which

dU(X)ψ := lim
t→0

t−1(U(exp(tX))− 1)ψ

13 In order to maintain the connection with the classical theory later on, we restrict ourselves to Lie groups
acting smoothly on manifolds. Mackey actually formulated his results more generally in terms of separable locally
compact groups acting continuously on locally compact spaces.
14 In one direction, this correspondence is as follows: given aG-covariant representation (H, π, U), one de-

fines a representationπU (C∗(G,M)) by extension ofπU (f ) =
∫
G

dx π(f (x, ·))U(x), wheref ∈ C∞c (G×M) ⊂
C∗(G,M), andf (x, ·) is seen as an element ofC0(M).
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exists. These operators satisfy the generalized canonical commutation relations

[X̂, Ŷ ] = i�[̂X, Y ] (5)

and

[X̂, π(ϕ)] = π(ξXϕ), (6)

whereϕ ∈ C∞c (M) andξX is the canonical vector field onM defined by theG-action; of
course, these should be supplemented with

[π(ϕ1), π(ϕ2)] = 0. (7)

Elementary quantum mechanics onRn then corresponds to the special caseM = Rn and
G = Rn with the usual additive group structure.

3. The imprimitivity theorem

In the spirit of theC∗-algebraic approach to quantum physics[81,96,24,34], theC∗-
algebraC∗(G,M) defined by the givenG-action onM should be seen as an algebra of
observables, whose inequivalent irreducible representations define the possible superselec-
tion sectors of the system. As we have seen, these representation s may equivalently be seen
as systems of imprimitivity or asG-covariant representation s ofC0(M) [21,23,78]. In any
case, it is of some interest to classify these. Mackey’simprimitivity theoremdescribes the
simplest case where this is possible.

Theorem 1. [7,59] Let H be a closed subgroup of G and let G act onM = G/H by
left translation. Up to unitary equivalence, there is a bijective correspondence between
systems of imprimitivity(H, U, P) for this action (or, equivalently, G-covariant representa-
tion ofC0(G/H) or nondegenerate representations of the transformation groupC∗-algebra
C∗(G,G/H)) and unitary representationsUχ of H, as follows:

• GivenUχ(H) on aHilbert spaceHχ, the triple(Hχ, Uχ, Pχ) is a system of imprimitivity,
whereHχ = L2(G/H,G×HHχ) is the Hilbert space ofL2-sections of the vector bundle
G×HHχ associated to theprincipalH-bundleGoverG/HbyUχ,Uχ is the representation
of G induced byUχ, andPχ

E = χE acts canonically onHχ as a multiplication operator.
• Conversely, if(H, U, P) is a system of imprimitivity, then there exists a unitary rep-

resentationUχ(H) such that the triple(H, U, P) is unitarily equivalent to the triple
(Hχ, Uχ, Pχ) just described.

The correspondence(Hχ, Uχ)↔ (Hχ, Uχ, Pχ) preserves direct sums and, accordingly,
irreducibility.

The simplest and at the same time most beautiful application of the imprimitivity theorem
is Mackey’s recovery of the Stone–von Neumann uniqueness theorem concerning the (regu-
lar) irreducible representations of the canonical commutation relations: takingG = R3 and
H = {e} (so thatM = R3), one finds that the associated system of imprimitivity possesses
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precisely one irreducible representation, since the trivial group obviously has only one such
representation.15 Furthermore (and this was one of Mackey’s main points), one may keepR3

as a confuguration space but replaceG = R3 by the Euclidean groupG = SO(3) � R3, so
thatH = SO(3). The generalized momenta then include the angular momentum operators
Ji along with their commutation relations, and the imprimitivity theorem then asserts that
the irreducible representations of(2) correspond to the usual irreducible representationsUj
of SO(3), j = 0,1, . . ..16 Mackey saw this as an explanation for the emergence of spin as a
purely quantum-mechanical degree of freedom; the latter perspective of spin goes back to
the pionieers of quantum theory[77], but is now obsolete (see Section9 below).

Mackey’s imprimitivity theorem admits a generalization toG-actions on an arbitrary
manifoldM, provided the action is regular.17

Proposition 1. [26,27]Suppose that each G-orbit in M is (relatively) open in its closure.
The irreducible representations ofC∗(G�M) are classified by pairs(O, Uχ),whereO is a
G-orbit in M andUχ is an irreducible representation of the stabilizer of an arbitrary point
m0 ∈ O.18

In view of the power of Mackey’s imprimitivity theorem, both for representation theory
and quantization theory, increasingly sophisticated and insightful proofs have been pub-
lished over the last five decades.19 All proofs relevant to noncommutative geometry are
either based on or are equivalent to:

Theorem 2. [30,87]The transformation groupC∗-algebraC∗(G,G/H) is Morita equiv-
alent toC∗(H).

This means that there exists a so-called equivalence or imprimitivity bimoduleE (which
in modern terms would be called aC∗(G,G/H)-C∗(H) Hilbert bimodule)20 that allows
one to set up the bijective correspondence – called for in Mackey’s imprimitivity theorem –
between (nondegerenerate) representation s ofC∗(G,G/H) and those ofC∗(H) (or

15 The “uniqueness of the canonical commutation relations” has also been derived from the fact that (up to unitary
equivalence) there is only one irreducible representation of any of the following objects: (i) The Heisenberg Lie
group with given nonzero central charge (von Neumann’s theorem[71]); (ii) The WeylC∗-algebra over a finite-
dimensional Hilbert space, provided one restricts oneself to the class of regular representations[8]; or (iii) The
C∗-algebra of compact operators[86].
16 By the usual arguments, one may replaceSO(3) bySU(2) in this argument, so as to obtainj = 0,1/2, . . ..
17 In view of this simple result,C∗-algebra ists are mainly interested in nonregular actions, cf.[23], but for

physicsProposition 1is quite useful. In any case, an example of a nonregular action is the action ofZ onT by
irrational rotations.
18 The associatedG-covariant representation ofC0(M) may be realized by multiplication operators on the Hilbert

spaceHχ carrying the representationUχ(G) induced byUχ.
19 Mackey’s own proof was rather measure-theoretic in flavour, and did not shed much light on the origin of his

result. Probably the shortest proof is[74].
20 A Hilbert bimoduleA � E � B overC∗-algebrasA andB consists of a Banach spaceE that is an algebraic
A-B bimodule, and is equipped with aB-valued inner product that is compatible with theA andB actions. Such
objects were first considered by Rieffel[87], who defined an ‘interior’ tensor productE⊗̂BF of anA–B Hilbert
bimoduleE with aB–CHilbert bimoduleF, which is anA–CHilbert bimodule.
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equivalently, ofH). Given a unitary representationUχ(H) on a Hilbert spaceHχ, or the
associated representationπχ of C∗(H) on the same space, one constructs a Hilbert space
Hχ = E⊗̂πχHχ. The action ofC∗(G,G/H) on E descends to an actionπχ(C∗(G,G/H))
onHχ, and extracting the associated representation s ofG and ofC0(G/H) one finds that
this is precisely Mackey’s induction construction paraphrased inTheorem 1. Conversely,
a given representationπχ of C∗(G,G/H) on a Hilbert spaceHχ definesπχ(C∗(H)) on
Hχ = Ē⊗̂πχHχ, and this process is the inverse of the previous one. Replacing the usual
algebraic bimodule tensor product by Rieffel’s interior tensor product⊗̂π, this entirely
mimics the corresponding procedure in algebra (cf.[25]); in the same spirit, one infers also
in general that two Morita equivalentC∗-algebras have equivalent representation categories.

The reformulation ofTheorem 1asTheorem 2begs the question what the deeper origin
of the latter could possibly be. One answer is given by the analysis in[22], from which
Theorem 2emerges as merely a droplet in an ocean of imprimitivity theorems. The answer
below [48–50,69]is equally categorical in spirit, but is entirely based on the use of Lie
groupoids. Namely, we will deriveTheorem 2and hence Mackey’sTheorem 1from the
functoriality of Connes’s map(8) below, which associates aC∗-algebra to a Lie groupoid.
Apart from the fact that this is very much in the spirit of noncommutative geometry, the use
of Lie groupoids will enable us to formulate an analogous classical procedure in terms of
Lie algebroids and Poisson manifolds. All this requires a little preparation.

4. Intermezzo: Lie groupoids

Recall that agroupoid is a small category (i.e. a category in which the underlying
classes are sets) in which each arrow is invertible. We denote the total space (i.e. the set of
arrows) of a groupoidΓ byΓ1, and the base space (i.e. the set on which the arrows act) by
Γ0; the object inclusion mapΓ0 ↪→ Γ1 is writtenu �→ 1u. We denote the inverseΓ1→ Γ1
by x �→ x−1, and the source and target maps bys, t : Γ1→ Γ0. Thus the composable pairs
form the spaceΓ2 := {(x, y) ∈ Γ1×Γ1 | s(x) = t(y)}, so that if (x, y) ∈ Γ2 thenxy ∈ Γ1 is
defined.21 A Lie groupoidis a groupoid for whichΓ1 andΓ0 are manifolds (Γ1 not neces-
sarily being Hausdorff),sandt are surjective submersions, and multiplication and inversion
are smooth.22 See[58,68] for recent textbooks on Lie groupoids and related matters.23

Some examples of Lie groupoids that are useful to keep in mind are:

• A Lie group G, whereΓ1 = G andΓ0 = {e}).
• A manifold M, whereΓ1 = Γ0 = M with the obvious trivial groupoid structures(x) =
t(x) = 1x = x−1 = x, andxx = x.

• Thepair groupoidover a manifoldM, whereΓ1 = M×M andΓ0 = M, with s(x, y) = y,
t(x, y) = x, (x, y)−1 = (y, x), (x, y)(y, z) = (x, z), and 1x = (x, x).

21 Thus the axioms are: 1.s(xy) = s(y) andt(xy) = t(x); 2. (xy)z = x(yz) 3. s(1u) = t(1u) = u for all u ∈ Γ0; 4.
x1s(x) = 1t(x)x = x for all x ∈ Γ1.
22 It follows that object inclusion is an immersion, that inversion is a diffeomorphism, thatΓ2 is a closed sub-

manifold ofΓ1×Γ1, and that for eachu ∈ Γ0 the fiberss−1(u) andt−1(u) are submanifolds ofΓ1.
23 The concept of a Lie groupoid was introduced by Ehresmann.
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• The gauge groupoiddefined by a principalH-bundleP
π→ M, whereΓ1 = P×HP

(which stands for (P×P)/H with respect to the diagonalH-action onP×P), Γ0 =
M, s([p, q]) = π(q), t([p, q]) = π(p), [x, y]−1 = [y, x], and [p, q][q, r] = [p, r] (here
[p, q][q′, r] is defined wheneverπ(q) = π(q′), but to write down the product one picks
q ∈ π−1(q′)).

• Theaction groupoidG�M defined by a smooth (left) actionG � M of a Lie groupGon
a manifoldM, whereΓ1 = G×M, Γ0 = M, s(g,m) = g−1m, t(g,m) = m, (g,m)−1 =
(g−1, g−1m), and (g,m)(h, g−1m) = (gh,m).

As mentioned before, an equivalence relation on a setM defines a groupoid, namely the
obvious subgroupoid of the pair groupoid overM. However, in interesting examples this
is rarely a Lie groupoid. To obtain a Lie groupoid resembling a given equivalence relation
on a manifold, various refinements of the subgroupoid in question have been invented, of
which the holonomy groupoid defined by a foliation is the most important example for
noncommutative geometry[12,68,80].

For reasons to emerge from the ensuing story, we look at Lie groupoids as objects in
thecategory of principal bibundles. To define this category, we first recall that an action
of a groupoidΓ on a spaceM is only defined ifM comes equipped with a mapM

π→ Γ0.
In that case, a leftΓ action onM is a map (x,m) �→ xm from Γ1×s,πΓ0

M to M,24 such
thatπ(xm) = t(x), xm = m for all x ∈ Γ0, andx(ym) = (xy)m whenevers(y) = τ(m) and

t(y) = s(x). Similarly, given a mapM
ρ→ ∆0, a right action of a groupoid∆ on M is

a map (m,h) �→ mh from M ×ρ,t∆0
∆1 to M that satisfiesρ(mh) = s(h), mh = m for all

h ∈ ∆0, and (mh)k = m(hk) wheneverρ(m) = t(h) andt(k) = s(h). Now, if Γ and∆ are
groupoids, aΓ–∆ bibundleM, also written asΓ � M � ∆, carries a leftΓ action as well
as a right∆-action that commute.25 Such a bibundle is calledprincipalwhenπ : M → Γ0
is surjective, and the∆ action is free (in thatmh = m iff h ∈ ∆0) and transitive along the
fibers ofπ.

Suppose one has right principal bibundlesΓ � M � ∆ and∆ � N � Θ. The fiber
productM ×∆0 N carries a right∆ action, given byh : (m, n) �→ (mh, h−1n) (defined
as appropriate). The orbit space (M ×∆0 N)/∆ is a Γ –Θ bibundle in the obvious way
inherited from the original actions. Thus, regardingΓ � M � ∆ as an arrow fromΓ to∆
and∆ � N � Θ as an arrow from∆ to Θ, one map look uponΓ � (M ×∆ N)/∆ � Θ

as an arrow fromΓ to Θ, defining the product or composition ofM andN. However, this
product is associative merely up to isomorphism, so that in order to have a category one
should regard isomorphism classes of principal bibundles as arrows.

For Lie groupoids everything in these definitions has to be smooth (andπ a surjective
submersion).

Definition 2. [11,35,38,67,68]The categoryG of Lie groupoids and principal bibundles
has Lie groupoids as objects and isomorphism classes [Γ � M � ∆] of principal bibundles

24 Here we use the notationA×f,gB C = {(a, c) ∈ A×C | f (a) = g(c)} for the fiber product of setsA andCwith
respect to mapsf : A→ B andg : C→ B.
25 That is, one hasτ(mh) = τ(m), ρ(xm) = ρ(m), and (xm)h = x(mh) whenever defined.
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as arrows. Composition of arrows is given by

[Γ � M � ∆] ◦ [∆ � N � Θ] = [Γ � (M ×∆ N)/∆ � Θ],

and the identities are given by 1Γ = [Γ � Γ � Γ ], seen as a bibundle in the obvious way.

Of course, it can be checked that this definition is correct in the sense that one indeed
defines a category in this way. This category has the remarkable feature that (Morita)
equivalence of groupoids (as defined in[69], a notion heavily used in noncommutative
geometry) is the same as isomorphism of objects inG.

5. From Lie groupoids to the imprimitivity theorem

A central idea in noncommutative geometry is the association

Γ �→ C∗(Γ ) (8)

of aC∗-algebraC∗(Γ ) to a Lie groupoidΓ [12].26 HereC∗(Γ ) is a suitable completion
of the function spaceC∞c (Γ1), equipped with a convolution-type product defined by the
groupoid structue. For the above examples, this yields:

• TheC∗-algebra of a Lie groupG is the usual convolutionC∗-algebraC∗(G) defined by
the Haar measure onG [78].

• For a manifoldM one hasC∗(M) = C0(M).
• The pair groupoid over a connected manifoldM definesC∗(M×M) ∼= K(L2(M)), i.e.

theC∗-algebra of compact operators on theL2-space canonically defined by a manifold.
• The C∗-algebra defined by a gauge groupoidP ×H P as above is isomorphic to
K(L2(M))⊗ C∗(H) (but any explicit isomorphism depends on the choice of a mea-
surable sections : M → P , which in general cannot be smooth).

• For an action groupoid defined byG � M one hasC∗(G�M) ∼= C∗(G,M), the trans-
formation groupC∗-algebra defined by the given action[23,78].

Having already defined the categoryG of principal bibundles for Lie groupoids, in order to
make the map(8) functorial, one has to regardC∗-algebras as objects in a suitable category
C as well.

Definition3. [22,49,93]The categoryChasC∗-algebras as objects and isomorphism classes
[A � E � B] of Hilbert bimodules, as arrows, composed using Rieffel’s interior tensor
product. The identities are given by 1A = A � A � A, defined in the obvious way.

26 See also[46,56,76] for detailed presentations. For a Lie groupoidΓ Connes’sC∗(Γ ) is the same (up to
isomorphism ofC∗-algebras) as theC∗-algebra Renault associates to a locally compact groupoid with Haar
system[85], provided one takes the Haar system canonically defined by the smooth structure onΓ .
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A crucial feature of this construction is that the notion of isomorphism of objects inC
coincides with Rieffel’s (strong) Morita equivalence ofC∗-algebras.

Theorem 3. [48] Connes’s mapΓ �→ C∗(Γ ) is functorial from the categoryG of Lie
groupoids and principal bibundles to the categoryC ofC∗-algebras and Hilbert bimodules.

Corollary 1. [50,69] Connes’s mapΓ �→ C∗(Γ ) preserves Morita equivalence, in the
sense that ifΓ and∆ are Morita equivalent Lie groupoids, thenC∗(Γ ) andC∗(∆) are
Morita equivalentC∗-algebras.

The imprimitivity bimoduleC∗(Γ ) � E � C∗(∆) establishing the Morita equivalence of
C∗(Γ ) andC∗(∆) is obtained from the principal bibundleΓ � E � ∆ establishing the
Morita equivalence ofΓ and∆ in a very simple way, amounting to the completion of
C∞c (Γ ) � C∞c (E) � C∞c (∆); see[48,95].

For example, in Mackey’s case one hasΓ = G� (G/H) and∆ = H , linked by the
principal bibundleG� (G/H) � G � H in the obvious way;27 the associated imprimi-
tivity bimodule forC∗(G� (G/H)) ∼= C∗(G,G/H) andC∗(H) is precisely the one found
by Rieffel [87]. ThusTheorem 2, and thereby Mackey’s imprimitivity theorem, ultimately
derives from the Morita equivalence

G� (G/H) ∼ H (9)

of groupoids, which is an almost trivial fact once the appropriate framework has been set
up. This framework cannot be specified in terms of groups and group actions alone, despite
the fact that the two groupoids relevant to Mackey’s imprimitivity theorem reduce to those.

Mackey’s analysis of the canonical commutation relations admits various other general-
izations thanProposition 1, at least one of which is related to groupoids as well: instead of
generalizing the action groupoidG� (G/H) to an arbitrary action groupoidG�M, one
may note the isomorphism of groupoids

G� (G/H) ∼= G×HG, (10)

where the right-hand side is the gauge groupoid of the principalH-bundleGwith respect to
the natural right-action ofH. This isomorphism (given by (xy−1, π(x))↔ [x, y]) naturally
passes to the ‘algebra of observables,’ i.e. one has

C∗(G� (G/H)) ∼= C∗(G×HG), (11)

and one may see the right-hand side as a special case ofC∗(P×HP) for an arbitrary principal
H-bundleP.28 Here one has a complete analogue of Mackey’s imprimitivity theorem: the
Morita equivalence

P×HP ∼ H (12)

27 For example, (g1,m)g2 = g1g2, defined wheneverm = π(g1g2).
28 This generalization is closely related to Kaluza–Klein theory and the Wong equations; see[46].
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at the groupoid level29 induces a Morita equivalence

C∗(P×HP) ∼ C∗(H) (13)

at theC∗-algebraic level, which in turn implies that there is a bijective correspondence be-
tween (irreducible) unitary representationsUχ(H) and representationsπχ(C∗(P×HP)).30

In the old days, the various irreducible representations (or superselection sectors) of
algebras of observables likeC∗(G�M) orC∗(P×HP) were seen as ‘inequivalent quanti-
zations’ of a single underlying classical system. From this perspective, quantities like spin
were seen as degrees of freedom peculiar to and emergent from quantum theory. Starting
with geometric quantization in the mid-1960s, however, it became clear that each supers-
election sectors of said type is in fact the quantization of a different classical system. The
language of Lie groupoids and Lie algebroids allows the most precise and conceptually
clearest discussion of this situation. Mathematically, what is at stake here is the relationship
between noncommutative geometry and symplectic geometry as its classical analogue.31

We now turn to this language.

6. Intermezzo: Lie algebroids and Poisson manifolds

Since the notion of a Lie algebroid cannot found in the noncommutative geometry liter-
ature, we provide a complete definition.32

Definition 4. A Lie algebroidAover a manifoldM is a vector bundleA
π→M equipped with

a vector bundle mapA
α→TM (called theanchor), as well as with a Lie bracket [, ] on the

spaceC∞(M,A) of smooth sections ofA, satisfying the Leibniz rule

[σ1, fσ2] = f [σ1, σ2] + (α ◦ σ1f ) σ2 (14)

for all σ1, σ2 ∈ C∞(M,A) andf ∈ C∞(M).

It follows that the mapσ �→ α ◦ σ : C∞(M,A)→ C∞(M,TM) induced by the anchor is a
homomorphism of Lie algebras, where the latter is equipped with the usual commutator of
vector fields.33

Lie algebroids generalize (finite-dimensional) Lie algebras as well as tangent bundles,
and the (infinite-dimensional) Lie algebraC∞(M,A) could be said to be of geometric origin
in the sense that it derives from an underlying finite-dimensional geometrical object. Similar

29 The equivalence bibundle isP×HP � P � H , with the given rightH action onP and the left action given by
[x, y]y = x.
30 GivenUχ(H) on a Hilbert spaceHχ, the representationπχ is naturally realized onL2(P/H,P×HHχ), as in

the homogeneous case.
31 See also[70] for a different approach to this relationship.
32 Cf. [58,68]for detailed treatments. The concept of a Lie algebroid and the relationship between Lie groupoids

and Lie algebroids are originally due to Pradines.
33 This homomorphism property used to be part of the definition of a Lie algebroid, but as observed by Marius

Crainic it follows from the stated definition.
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to our list of example of Lie groupoids in Section4, one has the following basic classes of
Lie algebroids.

• A Lie algebrag, whereA = g andM is a point (which may be identified with the identity
element of any Lie group with Lie algebrag; see below) andα = 0.

• A manifold M, whereA = M, seen as the zero-dimensional vector bundle overM, evi-
dently with identically vanishing Lie bracket and anchor.

• The tangent bundleover a manifoldM, whereA = TM andα = id : TM → TM, with
the Lie bracket given by the usual commutator of vector fields.

• Thegauge algebroiddefined by a principalH-bundleP → M; hereA = (TP)/H , so
thatC∞(M,A) ∼= C∞(M,TP)H , which inherits the commutator fromC∞(M,TP) as
the Lie bracket defining the algebroidstructure, and is equipped with the projectionα :
(TP)/H → TM induced byTP → TM.

• Theaction algebroidg�M defined by ag-action on a manifoldM (i.e. a Lie algebra
homomorphismg→ C∞(M,TM)) hasA = g×M (as a trivial bundle) andα(X,m) =
−ξX(m) ∈ TmM. The Lie bracket is

[X, Y ](m) = [X(m), Y (m)]g + ξYX(m)− ξXY (m).

It is no accident that these examples exactly correspond to our previous list of Lie groupoids:
as for groups, any Lie groupoidΓ has an associated Lie algebroidA(Γ ) with the same base
space.34 Namely, as a vector bundleA(Γ ) is the restriction of ker(t∗) toΓ0, and the anchor
is α = s∗. One may identify sections ofA(Γ ) with left-invariant vector fields onΓ , and
under this identification the Lie bracket onC∞(Γ0, A(Γ )) is by definition the commutator.

Conversely, one may ask whether a given Lie algebroidA is integrable, in that it comes
from a Lie groupoidΓ in the said way. That is, isA ∼= A(Γ ) for some Lie groupoidΓ?
This is not necessarily the case; see[18,57].

The modern interplay between Lie Lie groupoids and Lie algebroids on the ond hand,
and symplectic geometry on the other is based on various amazing points of contact. The
simplest of these is as follows.

Proposition 2. [16,17]The dual vector bundleA∗ of a Lie algebroid A is canonically a
Poissonmanifold. The Poisson bracket onC∞(A∗) is defined by the following special cases:
{f, g}± = 0 for f, g ∈ C∞(M); {σ̃, f } = α ◦ σf ,whereσ̃ ∈ C∞(A∗) is defined by a section
σ of A through the obvious pairing, and finally{σ̃1, σ̃2} = ˜[σ1, σ2].

Conversely, if a vector bundleE→ M is a Poisson manifold such that the Poisson
bracket of two linear functions is linear, thenE ∼= A∗ for some Lie algebroid A over M,
with the above Poisson structure.35

34 The associationΓ → A(Γ ) is functorial in an appropriate way, so that Mackenzie speaks of theLie functor
[58].
35 This establishes a categorical equivalence between linear Poisson structures on vector bundles and Lie alge-

broids. One can also show that in this situation the differential forms onA form a differential graded algebra, while
those onA∗ ∼= E (or, equivalently, the so-called polyvector fields onA) are a Gerstenhaber algebra; see[40].
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The main examples are:

• The dualg∗ of a Lie algebrag acquires its canonical Lie–Poisson structure (cf.[63]).
• A manifoldM, seen as the dual to the zero-dimensional vector bundleM → M, carries

the zero Poisson structure.
• A cotangent bundleT ∗M acquires the Poisson structure defined by its standard symlectic

structure.
• The dual (T ∗P)/H of a gauge algebroid inherits the canonical Poisson structure from
T ∗P under the isomorphismC∞(T ∗P)/H ∼= C∞(T ∗P)H .

• The dualg∗ �M of an action algebroid acquires the so-calledsemidirect productPoisson
structure[45,64].36

Combining the associationsΓ �→ A(Γ ) andA �→ A∗, one has an association

Γ �→ A∗(Γ ), (15)

of a Poisson manifold to a Lie groupoid, which we callWeinstein’s map. As we shall see,
this is a classical analogue of Connes’s map(8) in every possible respect.

7. Symplectic groupoids and the category of Poisson manifolds

Another important point of contact between Poisson manifolds and Lie algebroids that
is relevant for what follows is the following construction.

Proposition 3. [16] If P is a Poisson manifold, thenT ∗P is canonically a Lie algebroid
over P.

The anchor is just the usual mapT ∗P → TP , α �→ α> (e.g.,df �→ Xf )37 defined by the
Poisson structure, whereas the Lie bracket is

[α, β] = Lα>β − Lβ>α+ dπ(α, β), (16)

whereπ is the Poisson tensor. Combining this withProposition 2, one infers thatTP is a
Poisson manifold wheneverP is.38

The following definition will play a key role for us in many ways.

Definition 5. [16] A Poisson manifoldP is called integrable when the associated Lie
algebroidT ∗P is integrable (in being the Lie algebroid of some Lie groupoid).

36 Relative to a basis ofg with structure constantsCc
ab

, this is given by

{f, g} = Cc
ab
θc

∂f
∂θa

∂g
∂θb
+ ξaf ∂g

∂θa
− ∂f

∂θa
ξag .

37 The Hamiltonian vector fieldXf defined by a smooth functionf on a Poisson manifoldP is defined by
Xfg = {f, g}.
38 In addition, one may recover the Poisson cohomology ofPas the Lie algebroid cohomology ofT ∗P [58,103].



N.P. Landsman / Journal of Geometry and Physics 56 (2006) 24–54 39

If P is an integrable Poisson manifold, a groupoidΓ (P) for whichA(Γ (P)) ∼= T ∗P (and
henceΓ (P)0 ∼= P) turns out to have the structure of asymplectic groupoid.

Definition 6. [43,100,107]A symplectic groupoid is a Lie groupoid whose total spaceΓ1
is a symplectic manifold, such that the graph ofΓ2 ⊂ Γ×Γ is a Lagrangian submanifold
of Γ×Γ×Γ−.

See also[16,58,66]. Symplectic groupoids have many amazing properties, and in our opinion
their introduction into symplectic geometry has been the biggest leap forward since the
subject was founded.39 For example:

(1) There exists a unique Poisson structure onΓ0 such thatt is a Poisson map ands is an
anti-Poisson map.

(2) Γ0 is a Lagrangian submanifold ofΓ1.
(3) The inversion inΓ is an anti-Poisson map.
(4) The foliations ofΓ defined by the levels ofsandt are mutually symplectically orthog-

onal.
(5) If Γ is s-connected,40 thens∗C∞(Γ0) andt∗C∞(Γ0) are each other’s Poisson commu-

tant.
(6) The symplectic leaves ofΓ0 are the connected components of theΓ1-orbits.

With regard to the first point, the Poisson structure onΓ (P)0 induces the given one onP
under the diffeomorphismΓ (P)0 ∼= P . For later use, we record:

Proposition 4. [16,19,49]If a Poisson manifold P is integrable, then there exists an s-
connected and s-simply connected symplectic groupoidΓ (P) over P, which is unique up to
isomorphism.

For example, suppose that∆ is a Lie groupoid; is the Poisson manifoldA∗(∆) it defines by
(15) integrable? The answer is yes, and one may take

Γ (A∗(∆)) = T ∗∆, (17)

the so-calledcotangent groupoidof ∆ [16] (see also[50,58]). This is s-connected and
s-simply connected iff∆ is.

Using the above constructions, we now define a categoryP of Poisson manifolds, which
will play a central role in what follows. First, the objects ofP are integrablePoisson
manifolds; the integrability condition turns out to be necessary in order to have identities in
P; see below. In the spirit of general Morita theory[25], the arrows inP are bimodules in
an appropriate sense. Bimodules for Poisson manifolds are known asdual pairs[44,101].

39 It would be tempting to say that a suitable analogue of a symplectic groupoid has not been found in noncom-
mutative geometry so far, but in fact an analysis of the categorical significance of symplectic groupoids, Poisson
manifolds, and operator algebras[49] shows that the ‘quantum symplectic groupoid’ associated to aC∗-algebra
A is justA itself, whereas for a von Neumann algebra its standard form plays this role.
40 This means that each fibers−1(u) is connected,u ∈ Γ0. Similarly for s-simply connected.
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A dual pairQ← S → P consists of a symplectic manifoldS, Poisson manifoldsQ andP,
and complete Poisson mapsq : S → Q andp : S → P−, such that{q∗f, p∗g} = 0 for all
f ∈ C∞(Q) andg ∈ C∞(P). To explain the precise class of dual pairs whose isomorphism
classes form the arrows inP, we need a symplectic analogueS of the categoryG (cf.
Definition 2). In preparation, we call an action of a symplectic groupoidΓ on a symplectic
manifoldS symplecticwhen the graph of the action inΓ×S×S− is Lagrangian[16,66].

Definition 7. [49] The categoryS is the subcategory of the categoryG (of Lie groupoids
and principal bibundles) whose objects are symplectic groupoids and whose arrows are iso-
morphism classes of principal bibundles for which the two groupoid actions are symplectic.

We call such bibundlessymplectic. As we have seen (cf. Section6), the base space of a
symplectic groupoid is a Poisson manifold. Moreover, it can be shown[16,66]that the base
mapS → Γ0 of a symplectic action of a symplectic groupoidΓ on a symplectic manifold

S is a complete Poisson map such that for (γ, y) ∈ Γ ×s,ρΓ0
S with γ = ϕ

t∗f
1 (ρ(y)), one has

γy = ϕ
ρ∗f
1 (y) (hereϕgt is the Hamiltonian flow induced by a functiong, andf ∈ C∞(Γ0)).

Conversely, whenΓ is s-connected and s-simply connected, a given complete Poisson map
ρ : S → Γ0 is the base map of a unique symplecticΓ action onSwith the above property
[105]. Furthermore, it is easy to show that the base maps of a symplectic bibundle form
a dual pair. We call a dual pair arising from a symplectic principal bibundle in this way
regular.

Definition 8. The objects of the categoryP of Poisson manifolds and dual pairs are
integrable Poisson manifolds, and its arrows are isomorphism classes of regular dual pairs.

The identities inP are 1P = [P ← Γ (P)→ P ], whereΓ (P) is “the” s-connected and
s-simply connected symplectic groupoid overP; cf. Proposition 4. As in every decent
version of Morita theory, isomorphism of objects inP comes down to Morita equivalence
of Poisson manifolds (in the sense of Xu[105]).

It is clear thatP is equivalent to the full subcategorySc of S whose objects are
s-connected and s-simply connected symplectic groupoids; the advantage of working with
P rather thanSc lies both in the greater intuitive appeal of Poisson manifolds and dual
pairs over symplectic groupoids and symplectic principal bibundles, and also in the fact that
the composition of arrows can be formulated in direct terms (i.e. avoiding arrow compo-
sition inS orG) using a generalization of the familiar procedure of symplectic reduction
[49,106].

For example, a strongly Hamiltonian group actionG � S famously defines a dual pair

S/G
π←S

J→g∗

(whereJ is the momentum map of the action)[101], whose product with the dual pair
g∗ ←↩ 0→ pt in P equalsS/G←↩ S//G→ pt (if we assumeG connected). In other
words, the Marsden–Weinstein quotientS//G [1,63] may be interpreted in terms of the
categoryP (see Section11below for the significance of this observation.)
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8. The classical imprimitivity theorem

There is a complete classical analogue of Mackey’s theory of imprimitivity for (Lie)
group actions[32,46,108]. Firstly, the classical counterpart of a representation of aC∗-
algebra on a Hilbert space is a so-calledrealizationof a Poisson manifoldPon a symplectic

manifoldS [101]; this is acompletePoisson mapS
ρ→ P .41 The appropriate symplectic

notion of irreducibility is that

{Xρ∗f (x) | f ∈ C∞(P)} = TxS

for all x ∈ S (whereXg is the Hamiltonian vector field ofg ∈ C∞(S)); it is easy to show (cf.
Thm. I.2.6.7 in[46]) thatρ is irreducible iffSis symplectomorphic to a covering space of a
symplectic leaf ofP (andρ is the associated projection followed by injection). In particular,
any Poisson manifold has at least one irreducible realization.42

Secondly, we provide the classical counterpart ofDefinition 1. It goes without saying
that in the present contextG is a Lie group andM a manifold, all actions being smooth by
definition.

Definition 9. Given aG-action onM, aG-covariant realization ofM (seen as a Poisson
manifold with zero Poisson bracket) is a complete Poisson mapS

ρ→ M, whereS is a
symplectic manifold equipped with a strongly HamiltonianG-action,43 andLx(ρ∗f ) =
ρ∗Lx(f ) for all f ∈ C∞(M).

The significance of this definition and its analogy toDefinition 1are quite obvious; instead
of a representationπ : C0(M)→ B(H) one now has a Lie algebra homomorphismρ∗ :
C∞(M)→ C∞(S). Its relationship to the material in the preceding section is as follows:

Proposition 5. [106]WhenG is connected, aG-covariant realization ofMmayequivalently
be defined as a realizationS

σ→g∗ �M (equipped with the semidirect product Poisson
structure) whose associatedg-action on S is integrable (i.e. to a G-action on S).

Theg-action onSin question is given byX �→ Xσ∗X̃, whereX ∈ g defines a linear function
X̃ : g∗ → C by evaluation (and consequently also defines a function ong∗×M that is

constant onM, which we denote by the same symbol). Of course, givenS
ρ→ M as in

41 Some authors speak of a realization in case thatρ is surjective, but not necessarily complete. The completeness
of ρ means that the Hamiltonian vector fieldXρ∗f onShas a complete flow for eachf ∈ C∞c (P) (i.e. the flow is
defined for all times). This condition turns out to be the classical counterpart of the requirement thatπ(a)∗ = π(a∗)
for representation s of aC∗-algebra. The analogy between completeness of the flow of a vector field and self-
adjointness of an operator is even more powerful in the setting of unbounded operators; for example, the Laplacian
on a Riemannian manifoldM is essentially self-adjoint onC∞c (M) whenM is geodesically complete[1].
42 The appropriate symplectic notion of faithfulness is simply thatρ be surjective; it was recently shown by

Crainic and Fernandes[19] that a Poisson manifold admits a faithful realization iff it is integrable; cf.Definition
5. Along with their solution of this integrability problem[18], this is one of the deepest results in symplectic
geometry to date.
43 In the sense that theG-action has an equivariant momentum mapJ : S → g∗ [1,63].
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Definition 9, one definesS
σ→ g∗ �M by σ = (J, ρ); the nontrivial part of the proposition

lies in the completeness ofσ, given the completeness ofρ.
One then has the following classical analogue of Mackey’s imprimitivity theorem.

Theorem 4. [108]Up to symplectomorphism, there is a bijective correspondence between

G-covariant realizationsS
ρ→ G/H of G/H (with zero Poisson structure) and strongly

Hamiltonian H-spacesSρ, as follows:

• Given Sρ, the Marsden–Weinstein quotient (at zero)Sρ = (T ∗G×Sρ)//H is a G-
covariant realization of G/H.44

• Conversely, givenS
ρ→G/H there exists a strongly Hamiltonian H-spaceSρ such that

S ∼= Sρ.

This correspondence preserves irreducibility.
When G is connected, this correspondence may be seen as being between realizations

S
σ→g∗ � (G/H) whose associatedg-action on S is integrable, and realizationsSρ

Jρ→h∗
whose associatedh-action onSρ is integrable.

The original proof of this theorem was lengthy and difficult[46,108]. Fortunately, as in
the quantum case, there exists a direct categorical argument, according to which at least the
last part ofTheorem 4is a consequence of(9) as well. Namely, the following analogue of
Theorem 3holds:

Theorem 5. [48] Weinstein’s mapΓ �→ A∗(Γ ) is functorial fromGc toP.

Recall thatGc is the full subcategory ofG whose objects are s-connected and s-simply
connected Lie groupoids, and that the categoryP of Poisson manifolds and dual pairs has
been defined in the previous section. For example,G×(G/H) is an object inGc iff G is
connected and simply connected. Assume this to be the case for the moment. As already
mentioned, the categoryP has a feature analogous to the categoryC ofC∗-algebras, namely
that two objects are isomorphic iff they are Morita equivalent Poisson manifolds in the sense
of Xu [105]. Consequently, similar toCorollary 1one has:

Corollary 2. [50]Weinstein’smapΓ �→ A∗(Γ ) preservesMorita equivalence, in the sense
that if Γ and∆ are Morita equivalent s-connected and s-simply connected Lie groupoids,
thenA∗(Γ ) andA∗(∆) are Morita equivalent Poisson manifolds in the sense of Xu.

Thus the Morita equivalence(9) of Lie groupoids implies the Morita equivalence

g∗ � (G/H) ∼ h∗ (18)

44 TheG-action inherited from theG-action onT ∗G is given by pullback of left-multiplication, and the map
Sρ → G/H is inherited from the natural mapT ∗G→ G→ G/H .
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of Poisson manifolds. As forC∗-algebras (and algebras in general), if two Poisson manifolds
P1, P2 are Morita equivalent, then they have equivalent categories of realizations, and
the equivalence bimodule implementing this Morita equivalence comes with an explicit
procedure that defines a realization ofP2 given one ofP1, and vice versa. This procedure
is a certain generalization of symplectic reduction[32,46,105](much as the corresponding
Rieffel induction procedure forC∗-algebras is a generalization of Mackey induction). In the
case at hand, viz.(18), this precisely gives the prescription stated inTheorem 4, proving its
last part at least for simply connectedG. If G fails to be simply connected, one passes to its
universal cover̃G, and lets it act onG/H via the projectionG̃→ G. HenceG/H ∼= G̃/Ĥ

for someĤ ⊂ G̃; Lie theory gives̃g = g andĥ = h. The conclusion(18)still follows, this
time as a consequence ofG̃� (G̃/Ĥ) ∼ Ĥ rather than of(9).

We state a rather satisfying classical analogue ofProposition 1, which is essentially a
corollary toTheorem 4.

Proposition 6. [64] The symplectic leaves of the semidirect Poisson structure ong∗ �M

are classified by pairs(O,O′), whereO is a G-orbit in M, andO′ is a coadjoint orbit of
the stabilizer of an arbitrary point inO.

If we call the stabilizer in questionH, the symplectic leafL(O,O′) corresponding to the pair
(O,O′) is given by

L(O,O′) = {(θ, q) ∈ g∗×Q | q ∈ O, (−Co(s(q)−1)θ � h∗) ∈ O′}, (19)

wheres : O � G/H → G is an arbitrary section of the canonical principalH-bundleG
overG/H , and Co is the coadjoint action ofG ong∗.

Furthermore, one has a classical counterpart of(11), namely an isomorphism

g∗ � (G/H) ∼= (T ∗G)/H (20)

of Poisson manifolds. This may be generalized from the principalH-bundleG to arbitrary
principalH-bundlesP, provided thatP is connected and simply connected (this assumption
was not necessary in the quantum case). In that case, we may applyCorollary 2to find a
Morita equivalence of Poisson manifolds

(T ∗P)/H ∼ h∗. (21)

9. Deformation quantization

Largely due to the functoriality of Connes’s map(8)and its classical counterpart(15), we
have observed a striking analogy between theC∗-algebraC∗(Γ ) and the Poisson manifold
A∗(Γ ) associated to a Lie groupoidΓ . Beyond an analogy, the classical objectA∗(Γ )
turns out to be related to its quantum counterpart through deformation quantization in the
C∗-algebraic setting proposed by Rieffel:



44 N.P. Landsman / Journal of Geometry and Physics 56 (2006) 24–54

Definition 10. [89,90]A C∗-algebraic deformation quantization of a Poisson manifoldP
is a continuous field ofC∗-algebras (A,A�)�∈[0,1],45 whereA0 = C0(P), with a Poisson
algebraÃ0 densely contained inC0(P) and a cross-sectionQ : Ã0→ A of π0, such that,
in terms ofQ� = π� ◦Q, for all f, g ∈ Ã0 one has

lim
�→0
‖ i

�
[Q�(f ),Q�(g)] −Q�({f, g})‖� = 0. (22)

This has turned out to be an fruitful definition of quantization (cf.[46]). In many interesting
examples the fiber algebras are non-isomorphic even away from� = 0 (cf. [89,90] and
Footnote 53 below), but in the case at hand the situation is simpler.46

Theorem6. [47,56,83]47For any Lie groupoidΓ , the fieldA0 = C0(A∗(Γ )),A� = C∗(Γ )
for � �= 0,andA = C∗(Γ T ), theC∗-algebra of the tangent groupoidΓ T of Γ ,48 defines a
C∗-algebraic deformation quantization ofA∗(Γ ).49

We refer to the literature cited for the specification ofÃ0, as well as for the proof of(22).
The proof of the remainder of the theorem actually covers a much more general situation,
as follows[83].50

Definition 11. A field of Lie groupoids is a triple (G, X, p), with G a Lie groupoid,X a
manifold, andp : G→ X a surjective submersion such thatp = p0 ◦ r = p0 ◦ s, where
p0 = p � G0.

It follows that eachGx = p−1(x) is a Lie subgroupoid ofG over G0 ∩ p−1(x), so that
G =∐

x∈X Gx as a groupoid. One may then form the convolutionC∗-algebrasC∗(G) and
C∗(Gx). Eacha ∈ Cc(G) (or C∞c (G)) definesax = a � Gx as an element ofCc(Gx) (etc.).
These mapsCc(G)→ Cc(Gx) are continuous in the appropriate norms, and extend to maps
πx : C∗(G)→ C∗(Gx). Hence one obtains a field ofC∗-algebras

(A = C∗(G), Ax = C∗(Gx))x∈X (23)

overX, wherea ∈ C∗(G) defines the sectionx �→ πx(a).51 The question now arises when
this field is continuous.

45 HereA is theC∗-algebra of sections of the given field, which defines its continuity structure. A continuous
field (A,Ax)x∈X of C∗-algebras comes with surjective morphismsπx : A→ Ax.
46 Technically, the field inTheorem 6is said to be trivial away from� = 0, in the sense thatA� = B for all
� ∈ (0,1] and one has a short exact sequence 0→ CB→ A→ A0→ 0 (whereCB = C0((0,1], B) is the cone
of B).
47 See also[73] for a version of this result in the setting of formal deformation quantization (i.e. star products),

and also cf.[82].
48 Following Connes’s definition of the special case of the pair groupoidΓ = M×M around 1980 (see[12]), the

tangent groupoid (or adiabatic groupoid) of an arbitrary Lie groupoid was independently defined in[38,102]. See
also[46,76].
49 The same statement holds for the corresponding reduced groupoidC∗-algebras.
50 This setting was originally suggested by Skandalis.
51 A similar statement applies to the corresponding reducedC∗-algebras.
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Lemma 1. [83] The field(23) is continuous at all points whereGx is amenable[3,85].52

For example, the tangent groupoidΓ T of a given Lie groupoidΓ forms a field of Lie
groupoids over [0,1], with Γ T

0 = A(Γ ) (seen as a Liegroupoidinstead of a Lie algebroid

in the way every vector bundleE
π→ M defines a Lie groupoid over its base space, namely

by s = t = π and fiberwise addition) andΓ T
�
= Γ for � ∈ (0,1]. This eventually implies

Theorem 6(except for(22); the same strategy also leads to far-reaching generalizations
thereof.53

In physics,Theorem 6describes the quantization of particles with both internal and
spatial degrees of freedom in a very wide setting. In noncommutative geometry, certain
constructions of Connes in index theory turn out to be special cases ofTheorem 6.54 As
to the ideology of noncommutative geometry, the theorem shows that the two fundamental
classes of noncommutative manifolds, namely the ones defined by a singular quotient and
the ones defined by deformation[12,13], overlap. For in case that the equivalence relation
defining the quotient in question can be codified by a Lie groupoidΓ , the noncommutative
spaceC∗(Γ ) associated with the quotient space is at the same time a deformation of the
dual of its Lie algebroid.

Furthermore, Connes’s philosophy in dealing with singular quotients, and especially
his description of the Baum–Connes conjecture in Chapter II of[12], actually suggests a
procedure for the quantization of such spaces. We explain this in a simple example[51].
Suppose a Lie groupG acts on a manifoldM; it acts onT ∗M by pull-back, and we happen
to be interested in quantizing the quotient (T ∗M)/G. In case that theG-action is free and
proper the situation is completely understood: the quotient is a Poisson manifold of the
typeA∗(Γ ) for Γ = M×GM, to which Theorem 6applies (see also[46] for a detailed
study of this case). However, if theG-action is not free (but still assumed to be proper),
the quotient (T ∗M)/G may fail to be a manifold, let alone a Poisson manifold. According
to Connes, one should replace the space (T ∗M)/G by the groupoidT ∗M �G, and regard
the associated noncommutative spaceC∗(T ∗M �G) as aclassicalspace. If theG-action

52 And similarly for the case of reducedC∗-algebras.
53 Lemma 1applies much more generally to fields of locally compact groupoids. In the context ofC∗-algebraic

deformation quantization, there are two typical situations. In the smooth (Lie) case studied in this paper, allG� are
the same for� �= 0 but possibly not amenable, whereasG0 is amenable. The former property then yields continuity
at� = 0 by the lemma, whereas the latter gives continuity on (0,1]. In the context ofDefinition 10, the reason why
G0 is amenable is thatA0 must be commutative, which implies thatG0 is a bundle of abelian groups. But such
groupoids are always amenable[3]. In theétale case allG� are typically different from each other, but they are all
amenable. See[9] for a description of noncommutative tori and the noncommutative four-spheres of Connes and
Landi [14] (and of many other examples) as deformation quantizations along these lines.
54 One instance is the mapp! : K∗(F∗)→ K∗(C∗(V, F )) on p. 127 of[12], which plays a key role in the definition

of the analytic assembly map for foliated manifolds. This is the K-theory map induced by the continuous field
of Theorem 6, whereΓ is the holonomy groupoid of the foliation. The index groupoid for a vector bundle map
L : E→ F defined in[12, Section II.6] is another example. Here one has a Lie groupoidΓ = IndL = F �L Eover
F, whose Lie algebroid isF×BE. This is a vector bundle overB, and in the above formalism it should be regarded
as a groupoid overF under addition in each fiber. HenceA0 = C∗(F×BE) ∼= C0(F×E∗). The corresponding
K-theory map occurs in Connes’s construction of the Gysin mapf! : K∗(X)→ K∗(Y ) induced by a smooth map
f : X→ Y between manifolds.



46 N.P. Landsman / Journal of Geometry and Physics 56 (2006) 24–54

is free, one has a Morita equivalence of Lie groupoids

T ∗M �G ∼ (T ∗M)/G (24)

which byCorollary 1implies a Morita equivalence

C∗(T ∗M �G) ∼ C∗((T ∗M)/G) (25)

of C∗-algebras.55 In general, we propose to quantize the singular space (T ∗M)/G by de-
formingC∗(T ∗M �G), which may be done by the field of Lie groupoids defined by the
tangent groupoidΓ T of Γ = (M×M) �G. This field has fibersΓ T

0 = TM �G (where
TM is seen as a Lie groupoid, as explained above), andΓ T

�
= (M×M) �G. By Lemma 1

(which applies becauseTM �G is amenable; see Lemma 2 in[51]), this field of groupoids
leads to a continuous field ofC∗-algebras withA = C∗(Γ T ), etc., in the familiar way.
The fibers of the latter field are simplyA0 = C0(T ∗M) �G and A� = K(L2(M)) �

G for all � ∈ (0,1]. To what extent this reflects physical desiderata remains to be
seen.

10. Functorial quantization

The final application of groupoids to physics and noncommutative geometry we wish
to describe in this paper is a functorial approach to quantization. In our opinion this forms
the natural outcome of the categorical approach to Mackey’s imprimitivity theorem de-
scribed above. Beyond the desire to complete Mackey’s program, why should one wish
to turn quantization into a functor? Historically, quantum mechanics started with Heisen-
berg’s paperÜber die quantentheoretische Umdeutung kinematischer und mechanischer
Beziehungen56[36]. One might argue that the proper mathematical reading of Heisenberg’s
idea ofUmdeutung(reinterpretation) is that the transition from classical to quantum me-
chanics should be given by a functor. Indeed, attempts to make quantization functorial date
back at least to van Hove’s famous paper from 1951[99] (see also[28,29]), the general
conclusion being that functorial quantization is impossible (see[52] and refs. therein). How-
ever, all no-go theorems in this direction start from wrong and naive categories, both on the
classical and on the quantum side.

Instead, though we have to warn the reader that we are presenting a program rather
than a theorem here, it seems possible to interpret quantization as a functorQ from ei-
ther the categoryS (cf. Definition 2), or, more straightforwardly, from the categoryP
(seeDefinition 8; recall thatP is equivalent to a full subcategory ofS) to the category
KK defined by Kasparov’s bivariant K-theory (see[6,12]).57 This was first proposed in
[52–54]. Beyond the defining property of making quantization functorial, this program
would:

55 See[88] for the original, non-groupoid proof of(25).
56 On the quantum-theoretical reinterpretation of kinematical and mechanical relations.
57 The objects ofKK are separableC∗-algebras, and the arrows are HomKK(A,B) = KK(A,B), composed with

Kasparov’s productKK(A,B)×KK(B,C)→ KK(A,C).
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• Unify deformation quantization and geometric quantization into a single operation (the
former becoming the object side of the quantization functor and the latter the arrow side);

• Imply the functoriality of shriek maps in K-theory[4], in particular providing
a natural home for Connes-style proofs and generalizations of index theorems
[12,15];

• Imply the “quantization commutes with reduction” conjecture of Guillemin and
Sternberg[31];

• Provide unlimited generalizations of this conjecture, e.g., to noncompact Lie groups and
Lie groupoids (see[39] for the former).

It should be clear that the use of groupoids is essential in this program, since the classical
categoryS of symplectic groupoids and principal symplectic bibundles either forms the
domain of the quantization functorQ, or, in case one more naturally starts fromP, plays
an essential role in the definition of the latter category.

Let us indeed construe quantization as a functorQ : P→ KK. This means that quan-
tization sends (isomorphism classes of) dual pairs into (homotopy classes of) Kasparov
bimodules. More precisely, if Poisson manifoldsP1 andP2 are quantized by (separable)
C∗-algebrasQ(P1) andQ(P2), respectively, a dual pairP1← M → P2 should be quantized
by an element

Q(P1← M → P2) ∈ KK(Q(P1),Q(P2)), (26)

whereKK(−,−) is the usual Kasparov group[6,12]. Roughly speaking, the construction of
Q(P) should be done by someC∗-algebraic version of deformation quantization, whereas
that ofQ(P1← M → P2) should come from a far-reaching generalization of geometric
quantization first proposed, in special cases, by Raoul Bott;58 see[33,94]. This proposal
turns out to be closely related to Connes’s construction of shriek maps[12,15].

To explain the construction of(26), we assume that the symplectic manifold (M,ω) is
prequantizable. Cf.[33,75]for details of the following approach to geometric quantization.
One picks an almost complex structureJ onM that is compatible withω (in thatω(−,J−)
is positive definite and symmetric). ThisJ canonically induces a Spinc structure onTM,
which should subsequently be twisted by a prequantization line bundleL line bundle over
M to obtain a Spinc structure (P,∼=) onM.59 Denote the (complex) spin representation of
Spinc(n) on the finite-dimensional Hilbert spaceSn by∆n. One may then form the associated
spinor bundleSn = P×∆nSn, with Dirac operatorD/ : C∞(M,Sn)→ C∞(M,Sn). For even
n (the case that applies here, asM is symplectic) the spin representation decomposes into
two irreducibles∆n = ∆+n ⊕∆−n on Sn = S+n ⊕ S−n , so that also the vector bundleSn
decomposes accordingly asSn = S+n ⊕ S−n . Being odd with respect to this decomposition,
the Dirac operator then splits accordingly asD/± = C∞(M,S±)→ C∞(M,S∓).

58 This was done in seminars and conversations; no paper by Bott containing his proposal seems to exist (V.
Guillemin, R. Sjamaar, private communications).
59 We here define a Spinc structure onM as an equivalence class of principal Spinc(n)-bundleP overM with

an isomorphismP×πRn ∼= TM of vector bundles. Heren = dim(M) and the bundle on the left-hand side is the
bundle associated toP by the defining representation ofSO(n). Connes’s construction of shriek maps lacks the
twisting with the prequantization line bundle.
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Given a dual pairP1← M → P2, the fundamental idea is to use the mapM → P2
to turn the appropriate completion ofC∞c (M,Sn) to a graded HilbertC∗(Q(P2)) module
E, and subsequently, to use the mapP1← M to construct an action ofC∗(Q(P1)) on E,
producing aC∗(Q(P1))-C∗(Q(P2)) graded Hilbert bimodule. The final step is to employ
the Dirac operatorD/ to enrich this bimodule into a Kasparov cycle, whose homotopy class
defines the element(26)we are after.

This procedure has so far been carried through in a few cases only, namely those in
which Theorem 6states how the Poisson manifoldsPi are to be quantized, and in which
simultaneously techniques from the literature on the Baum–Connes conjecture[5,12,98]
are available to construct(26) according to the procedure just sketched. The simplest
case isP1 = P2 = pt (i.e. a point) andM an arbitrary compact prequantizable symplec-
tic manifold.60 Most people would agree thatQ(pt) = C, and under the isomorphism
KK(C,C) ∼= Z the Kasparov cycle defined byD/ is just the Fredholm index ofD/+ [6].
This number, then, is Bott’s quantization of (M,ω). Consequently, we have

Q(pt← M → pt) = Index(D/+). (27)

11. Quantization commutes with reduction

The above definition of quantization gains in substance when one passes to a dual pair
M/G← M → g∗ defined by a strongly Hamiltonian group actionG � M in the usual way
[101]. For simplicity, we will actually use the dual pairpt← M → g∗.61 Theorem 6tells
us thatQ(g∗) = C∗(G), whereG is any Lie group with Lie algebraG; we take the connected
and simply connected one.62 Hence the quantization of the dual pairpt← M → g∗ should
be an element of the Kasparov groupKK(C, C∗(G)).

This element can be defined when theG-action is proper and cocompact (i.e.M/G
is compact), and lifts to an action on the principal bundleP defining the Spinc structure.
Namely, in that case one regardsD/ as an operator on the graded Hilbert spaceL2(M,Sn)
of L2-sections ofSn, which at the same time carries a natural representationπ of C0(M)
by multiplication operators, as well as a natural unitary representationU(G). Provided
that in addition the Dirac operatorD/ is almostG-invariant in the sense that [U(x),D/ ] is
bounded for eachx ∈ G, these data specify an element [L2(M,Sn), π(C0(M)), U(G),D/ ]
of the equivariant analytic K-homology groupKG

0 (M) = KKG(C0(M),C) [37].
Here we suppress the grading of the Hilbert space in question in our notation.
Let

IndexG : KG
0 (M)→ K0(C∗(G))

60 Let us note that the associated dual pairpt← M → pt does not define an element of our categoryP, but this
nuisance does not stop us from proceeding.
61 This dual pair does not define an element ofP, but this does not affect any of our arguments.
62 Here the use of the categoryS as the domain of the quantization functorQ is more satisfactory. The classical

data is then formed by theG-action onM itself (in the guise of the associated symplectic action of the symplectic
groupoidT ∗G), instead of the associated momentum mapM → g∗. This refinement is, of course, essential when
G is discrete.
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be the analytic assembly map as defined by Baum et al.[5], seen however as a map taking
values inK0(C∗(G)) instead ofK0(C∗r (G)) (cf. [98] for this point). For simplicity we write

IndexG(D/+) ≡ IndexG([L2(M,Sn), π(C0(M)), U(G),D/ ]). (28)

We then define the quantization of the dual pairpt← M → g∗ as

Q(pt← M → g∗) = αC∗(G)(IndexG(D/+)), (29)

whereαA : K0(A)→ KK(C, A) is the natural isomorphism one has for any separableC∗-
algebraA [6]. As required,(29)defines an element of

KK(Q(pt),Q(g∗)) = KK(C, C∗(G)).

For a much simpler example, whose significance will become clear shortly, consider the
dual pairg∗− ←↩ 0→ pt, where 0 (seen as a coadjoint orbit ofG) is the zero element of the
vector spaceg∗, equipped with minus the Lie–Poisson structure. Its quantization should be
an element of the Kasparov representation ringKK(C∗(G),C), which we simply take to be
the graded Hilbert spaceH = C⊕ 0 carrying the trivial representation ofG, with F = 0.
We denote this element by [C,0,0], so that

Q(g∗ ←↩ 0→ pt) = [C,0,0]. (30)

Let

τ∗ : KK(C, C∗(G))→ KK(C,C) ∼= Z

be the map functorially induced by the morphismτ : C∗(G)→ C given by the trivial
representation ofG.63 Functoriality of the Kasparov product

KK(C, C∗(G))×KK(C∗(G)),C→ KK(C,C)
→∼= Z

then yields

y× [C,0,0] = τ∗(y) (31)

for anyy ∈ KK(C, C∗(G)). In particular,(29) and (30)give

Q(pt← M → g∗)×Q(g∗− ←↩ 0→ pt) = τ∗(IndexG(D/M+ )); (32)

to avoid confusion later on, we have added a suffixM to the pertinent Dirac operator.
On the classical side, in the categoryP we compute

(pt← M → g∗) ◦ (g∗− ←↩ 0→ pt) = pt← M//G→ pt, (33)

63 Forf ∈ Cc(G) one simple hasτ(f ) =
∫
G

dx f (x). This is the reason why we useC∗(G) rather thanC∗r (G),
as is customary in the Baum–Connes conjecture: forτ is not continuous onC∗r (G) (unlessG is amenable).
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whereM //G is the Marsden–Weinstein quotient. Assuming thatM //G is prequantizable
(this is a theorem in the compact case[33]), we have already seen from(27) that

Q(pt← M//G→ pt) = Index(D/M//G+ ), (34)

where we have denoted the appropriate Dirac operator onM//G byD/M//G.
Functoriality of quantization would imply

Q(pt← M → g∗)×Q(g∗− ←↩ 0→ pt) = Q((pt← M → g∗) ◦ (g∗− ←↩ 0→ pt)).

(35)

Using(32) and (33), this amounts to

τ∗(IndexG(D/M+ )) = Index(D/M//G+ ). (36)

ForG andM compact, this is precisely the so-called Guillemin–Sternberg conjecture that
“quantization commutes with reduction”[31] in its modern form[33,65,94].64 To see this,
note that forM compact the Dirac operatorD/+ is Fredholm, whereas forG compact one
hasK0(C∗(G)) ∼= R(G), the representation ring ofG. Consequently, IndexG(D/+) defines
an element ofR(G), and the mapτ∗ : R(G)→ R(e) ∼= Z is just [V ] − [W ] �→ dim(V0)−
dim(W0), whereV0 ⊂ V is the space ofG-invariant vectors, etc.

ForG countable (acting properly and cocompactly onM, as stated before),(36) boils
down to the naturality of the Baum–Connes assembly map for countable discrete groups
[98]. Combining this fact with the validity of(36) for compactG andM, it can be shown
that (36) holds for any strongly Hamiltonian proper cocompact action ofG on a possibly
noncompact symplectic manifold, provided thatG contains a discrete normal subgroupΓ
with G/Γ compact[39].

Let us close this paper in the right groupoid spirit by pointing out that all arguments in
this section should be carried out for Lie groupoids instead of Lie groups. For example, the
pertinent symplectic reduction procedure (generalizing Marsden–Weinstein reduction) was
first studied in[66], and can be reinterpreted in terms of the product in the categoryP just
as in the group case. A very interesting special case comes from foliation theory, as follows
(cf. [11,12,15,38]). Let (Vi, Fi), i = 1,2, be foliations with associated holonomy groupoids
G(Vi, Fi) (assumed to be Hausdorff for simplicity). A smooth generalized mapf between
the leaf spacesV1/F1 andV2/F2 is defined as a principal bibundleMf between the Lie
groupoidsG(V1, F1) andG(V2, F2). Classically, such a bibundle defines a dual pairT ∗F1←
T ∗Mf → T ∗F2 [50]. HereTFi ⊂ TVi is the tangent bundle to the foliation (Vi, Fi), whose
dual bundleT ∗Fi has a canonical Poisson structure.65 Quantum mechanically,f defines an
element[11,38]

f! ∈ KK(C∗(G(V1, F1)), C∗(G(V2, F2))).

In the functorial approach to quantization,f! is interpreted as the quantization of the dual
pair T ∗F1← T ∗Mf → T ∗F2. The functoriality of quantization among dual pairs of the

64 This conjecture is, in fact, a theorem[41,65,75,97], but the name “conjecture” is still generally used.
65 The best way to see this is to interpretTFi as the Lie algebroid ofG(Vi, Fi).
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same type should then follow from the computations in[38] on the quantum side and[50]
on the classical side. The construction and functoriality of shriek maps in[4,11] is a special
case of this, in which theVi are both trivially foliated.
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[4] M.F. Atiyah, I.M. Singer, The index of elliptic operators, I, Ann. Math. 87 (2) (1968) 484–530.
[5] P. Baum, A. Connes, N. Higson, Classifying space for proper actions and K-theory of groupC∗-algebras,

C∗-algebras: 1943–1993, 240–291 Contemp. Math., vol. 167, Am. Math. Soc., Providence, RI, 1994.
[6] B. Blackadar,K-Theory for Operator Algebras, second ed., Cambridge University Press, Cambridge, 1998.
[7] R. Bott, Homogeneous vector bundles, Ann. Math. 66 (2) (1957) 203–248.
[8] O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics. 1.C∗- andW∗-Algebras,

Symmetry Groups, Decomposition of States, second ed., Springer-Verlag, New York, 1987.
[9] Cadet, F. D́eformation et quantification par groupoı̈de des varíet́es toriques, Ph.D. thesis, Université
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[39] P. Hochs, N.P. Landsman, The Guillemin–Sternberg conjecture for noncompact groups and spaces, in press.
[40] J. Huebschmann, Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras, Ann. Inst.

Fourier (Grenoble) 48 (1998) 425–440.
[41] L.C. Jeffrey, F.C. Kirwan, Localization and the quantization conjecture, Topology 36 (1997) 647–693.
[42] P.E.T. Jørgensen, R.T. Moore, Operator Commutation Relations, Reidel, Dordrecht, 1984.
[43] M.V. Karasev, Analogues of objects of the theory of Lie groups for nonlinear Poisson brackets, Izv. Akad.

Nauk SSSR Ser. Mat. 50 (1986) 508–538, 638.
[44] M.V. Karasev, The Maslov quantization conditions in higher cohomology and analogs of notions developed

in Lie theory for canonical fibre bundles of symplectic manifolds. I, II. Selecta Math. Soviet. 8 (1989),
213–234, 235–258.

[45] P.S. Krishnaprasad, J.E. Marsden, Hamiltonian structures and stability for rigid bodies with flexible attach-
ments, Arch. Rational Mech. Anal. 98 (1987) 71–93.

[46] N.P. Landsman, Mathematical topics between classical and quantum mechanics, Springer Monographs in
Mathematics, Springer-Verlag, New York, 1998.

[47] N.P. Landsman, Lie groupoidC∗-algebras and Weyl quantization, Comm. Math. Phys. 206 (1999) 367–
381.

[48] N.P. Landsman, Operator algebras and Poisson manifolds associated to groupoids, Comm. Math. Phys. 222
(2001) 97–116.

[49] N.P. Landsman, Quantized reduction as a tensor product, Quantization of singular symplectic quotients,
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